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CRITICAL STRESS OF PLATE COLUMNS

By John C. Ho@olt and Elbridge Z. Stowell

Solutions are given for the elastic buckling stress of flat
rectangular plates with simply supported or fixed ends when loaded
as columns. For the case of simply supported ends, an exact solution
is made; for the case of fixed ends, an approximate solution is made
by use of a power series in conjunction with Lagrangian undetermined
multipliers. The critical stress is given in terms of the Ner
value of the load multiplied by a coefficient which depends on the
width-len@h ratio of the column and varies for practical purposes

between the values 1 and 1—, where w is Poisson’s ratio of the
1 - P*

material.

The results showed that the plates maybe considered as “columns,“
as the term is used in ordinary engineering practice, when the width-
length ~tio is less than 0.1 and maybe considered as infinitely wide

(plates Euler column value times coefficient of *
)
when the

width-length ratio is greater than 10. For interme~i&e width-length
ratios, the appropriate coefficient may be found from a chart.

The procedure for determining the critical stress of plate columns
with intermediate end fixities is also given. The study also indicates
the solution for the local buckling of angle or cruciform sections.

INTRODUCTIOIV

The Her equation for column buckling is recognized to be c&rect
for a ve~ narrow rectangular plate loaded as a column (reference 1)

1
and is generally assumed to be modified by a factor ~when’

applied to a
that the end
surface over

1 : w’
very wide plate. This factor is introduced on the basis
supports force the plate to buckle into a cylindrical
most of its width, and thereby the bending stiffhess is
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increased from EI to ‘~. (See reference 2.) For the very
-u

narrow plate, the effect of the end supports is negligible because
only a small region at each end is affected (St. Venant’s principle).
Thus, the critical stress may change as much as 10 percent from the
Euler value, depending on whether the-plate column is very narrow or
very wide.

The purpose ofthi.s study is t~ investigate the effect that width
has on the buckling stress in the transition from a very narrow to a
very wide plate colupn. Solutions are made for both the case of simply
supported ends and for the case of fixed ends, and the means for approxi-
mately taking into account elastically restrained ends is indicated. .

RESULTS AND CO~CLUSIOIW

The solutions for the buckling stress of a flat plate column with
simply supported ends and with fixed ends are gi%n in appendixes A
and B, respectively. Figure 1 shows the coordinate system and the
plate dimensions that are used in the analyses. For the plate column
with simply supported ends, an exact solution is made by solving the
differential equation that expresses equilibrium of the plate when
slightly buckled. For the case of fixed ends, however, au exact
solution is not possible because a deflection function satisfying both
the differential equation and the boundary conditions is not known.
An approximate solution for this case is therefore made by use of the
energy method.

The results of the analyses showed that the critical stress of a
plate loaded as a column maybe found from the modified Ner equation

v Y#Etycr= —

m
l-p2~

PIF

where

v b
coefficient depending upon ratio —

LjK

v Poissonts ratio

E elastic modulus

L actual length of

.’

plate
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b. plate width

t column thickness

P radius of gyration (t/@)

c restraint coefficient (c = 1 for simply supported ends;
c = 4 for fixed enils)

A band of values of V“ is shown in figure 2 for v = 0.30. The lower
limlt of the band is the curve for simply supported ends (c = 1) and
the upper limit of the band is the corresponding curve for fixed
ends (c = 4). The percentage increase in critical stress above the
Euler value is seen to be slightly greater for a fixed-end plate

.

column than for a simply supported plate column. This greater increase
in stress for the fixed-end case arises b$cause not only do the end
SUPPO@S protide restraint against transverse bending but they provide
restrairrtwhere the tendency for this bending to occur is large.
Intermediate end conditions (1 < c < 4) ~UM be represented by
similar curves within the band.

J-nspectionof the band shows that the difference between v for
fixed ends and v for simply supported ends is nowhere greater than
2 percent of the ordinate. This difference repfisents the maximum
error in v and, consequently, critical stress that may result from
use of a curve for the wrong fixity. Use of the bottom curve (c = 1)
to calculate the critical stress will evidently be slightly conservative
for all cases in which c is greater than 1.

.

In figure 2, as
*

approaches zero, all values of v approach

l-pp and the equation for critical stress reduces to Ner’s equation.

%%
becomes large, all values of v approach, for practical

purposes, the value
to Eulerts equation

for values of ~
L/fi

conventional sense;

unity, and the equation for critical stress reduces
modified by a factor 1 - 1.L2.‘Ina general way,

less than 0.1, the structure is a “COIUIUU”in the

whereas for values of +< greater than 10, the
J+vu

structure is an ‘infinitely wide platen because it requires the plate
modulus.

A point of theoretical interest is worthy of m?rrtion,however, in
regard to the curves shown in-figure 2. These cuwes do not approach
asymptoticallythe value of 1 for large values of b/L, as might
ordinarily be expected; rather, they approach a value slightly lower
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than 1. In appendix A, for example, the asymtotic value of v for a
“ pin-end plate column with a Poisson ratio of 0.30 is shown to be 0.9962.
Thus, no matter how wide the plate, the critical-buckling coefficient
can neved quite reach the full infinitely wide plate value of unity.
This reduction maybe eqlainedby considering the free unloaded edges.
Some restraint against,the tendency for these edges to curl would have
to be ~rovided in order to force the plate to buckle in a truly
cylindrical surface, which is necessary to achieve the buckling coef-
ficient of 1. In the absence of this restraint, the free-edges are
evidently the weakest part of the plate, with the consequence that
buckling occurs at a slightly reduced stress.

.

In order to illustrate the effect of Poisson’s -ratioon the curves
for v, a series of three curves is shown in figure 3 for simply sup-.
ported ends (c = 1) for values of Poisson’a ratio ofO.25, 0.30, and O.35.

For large values of ~, all curves approach, for practical purposes,
L/~

the value of unity; however, for small values of
+%

the curves

separate b order to approach their individual values of 1 - V2. The
circled points on the curve for p = 0.30 represent points obtained
by a different method from that used to derive the rest of the curve;
the method is described in appendix B.

.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Air Force Base, Vs., May19, 1950
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APPENDIX A

CRITICAL STRESS OF A PIATE COLUMN WITH SIMPLY SUPPORTED EHDS

The buckling stress of a flat plate column may be determined by
solving the differential equation that expresses equilibrium of the
plate when slightly buckled. Figure 1 shows the coordinate system and
the plate dimensions that are used in the analysis.

The differential equation for equilibrium of a flat plate under
longitudinal direct stmsss is (reference 3, p. 305)

where

w

D

E

t

P

acr

(l)?) %+ Pa% ,a% ,acra%=o) (Al)
2 ax2*2 2 i3x2

deflection of plate at (x, y)

bending stiffness of plate

( )’“* - V2
.

elastic modulus

thickness of plate

Poisson*s ratio

applied compressive stress at buckling

The critical stress crcr may be given in the form

.*
.Cr .,2 (A2)

where’ L is the length of the plate and V is a numerical factgr to
be determined. -Substitution of this expression for acr into

equation (Al] leads to a modified form

(A3)
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The boundary conditions to be satisfied, where b is the plate width,
.

are

b

(W)a = o .

x=L

x.L

($+&J)+=o

[

asw 1a3w .0
—+(2-
*

l.d~
axay~

2

(Ak)

(Ahb)

Differential equations (A3) and conditions (Ah-a) and (Ah) are satisfied
identicallyby either ●

or

where P, Q, R,
conditions and

w= (P

w=
(
R

and S

.

)cosh~ + Q cosh$ sin% (A>)

)sinh~+ssinhg sin+ (A5b)

are coefficients which depend on the boundary

Equation (A5a) represents the deflection surface for a symmetrical type
of buckling and equation (A5b) represents an antisymmetrical type of
buckling. Substitution of these two deflection equations successively

.

into boundary conditions (Akc) and (Akd) leads to two stability criteria,
one for each type of buckling: %

-. --- — — ----- — - ——— .
,.. - “.
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For symmetricalbuckling,

For antisymmetricalbuckl~j

Soltiions are obtained.by assigning a value to b/L and adjusting the
value of v until equation (A6a) or equation (A6b) is satisfied. Both
experience and calculation show that a lower value of v results frcm
satisfying equation (A6a); that is, the buckling is the symmetrical
type. If by some means the center line is held fixed (as in a cruciform]
then the criterion-(A6b) applies.

—.

The values of

z%in figure 2.

(c = 1 for simply
introduced to allow for the approkte treatment of
intermediate end restraints. The following modified
introduces the factor c:

V for synmzetricalbuckling are plotted against

The factor c is the column-end fixity coefficient

supported ends; c = 4 for fixed enW) and has been
plaie columus with
Euler equation

v Yr?E
(ycr. ——

bM2 L
2

()~

(A7)

#E
where —

L*
is the Euler value for a column with restrained ends.

()&

For simply -rted ends (c = 1), equation (A7) reduces precisely to
the critical buckling stress given by equation (A2).

Of interest is the limiting value of v as b/L approaches zero.
If equation (A6a) is evaluated in the limit as b/L approaches zero
the buc=ing coefficient of 1 - w*, which applies for a narrow plate -
column, is found directly. Of greater theoretical interest, however,
is the case where b/L approaches infinity. If b/L is set eaual to
infinity and V iS

this case, the left
taken as 1, as might ordinarily-be e

T
cted‘for

side of equation (A6a) reduces to 2y . The
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value v = 1 is therefore not a solution for the infinitely wide case.
If, however, b/L is set equal to infinity (assuming v # 1),
equation (A6a) reduces to ●’

(A8)

For the case of w = 0.30, this equation yields a value of V :0.9962.
Theoretically, therefore, the buckling coefficient of
pending to cylindricalbucld.ing)is never reached for
wide column.

unity (corres-
an infinitely

.

.

.
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APHMDIX B

.
CRITICAL STRESS OF A PLATE COLUMN WITH FIXED ENDS

An e=ct solution for the critical s>ress of a plate column with
fixed ends cannot be made because a deflection function which satisfies
equation (A3) and all the bounda~ conditions of a fixed-end plate is
not known. By use of the energy method, however, an approximate
solution can be made. The coordinate system (see fig. 1) is the same
as that used in appendix A.

Inasmuch as the unloaded edges
has been found convenient to assume
in the form

.

of the plate column are free it
a symmetrical deflection function

9

This equation is sufficiently general and automatically satisfies the
condition that the slope must be zero at the ends. From the condition
that the deflection must be zero at the ends, the following relation
iS found:

This equation must be true regardless of the value of y; hence the ,
coefficients of inditidua. pcwers of y must each he equal to zero.

. . E %=0

E bn=O
I

x Cn=O

z dn =0
I

The total potential energy U of the system wh& buckling occurs ,
may be given by the expression

U= V-T (B4)

. . .. .---- . .. .. . .— _____ ______ .. .. . . .. .. . . . .. ___ —.. —.—. ——. _________ ___
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where V represents
done by the external
the deflection is

I?ACAT~ 2163

the energy of bending and T represents the work
axial forces.

()]acrt ?Iw 2

T&
dy dx

In accordance with the minimum

‘Theexpression for U in terms of

.

potential-energy

(B5)

principle the
energy U is minimized with respect to the deflection coefficients (a,
b, c, and d), mibject to conditions (B3). These conditions are
introduced in the minimization process by the use of Lagrangian
undetermined multipliers.

It is convenient to e~ress Ucr in terms of the dimensionless

buc~i& coefficient v by means of the notation ,
●

acrt pg .
—= (B6)
D L2

Substitution of this equation and of the expression for w,
equation (Bl), into equation (B5) and addition of conditions (B3) by
undetermined multipliers results in
to tieminimized:

F= z “[()
n24n2-Vfl+

n=0,1,2,...

the following expression which

where for n # O .

bm=o

5no = 1

and for n=O .

is /

+

(B7)
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5 16 2 + ~2 +$b~cn+2!k’n~+*n%f4=3n2+~n 11
7

II

(B8)

and a, P, y, and 8 are the undetermined multipliers. Taking the
partial derivatives of F with respect to ~, bn, Cn, and ~ and

equating them ‘W zero, the following system of equations is obtained:

\

..
~~+Bnbn+~cn+Dn~=~ ,

~an + ~bn + ~n~ + ~dn : -~

(39)

C@n + Fnbn + Hncn + Jn~ = -Y

%an + ~bn + Jncn + ~~ = -a

where ●

& = 4n2(n2 - V)

n2
en =*-1-2

.

.
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~2
Dn=— 7An -

~2
Fn=— 7.% +

Gn =$An+
H= = $An +

Jn = ~n +

n2 ‘
Ln=— 13% +

24#nm2

u5@. +, ~m)m2 + ~~2[1 -

32(1 + t@m2 + ~ ~4(1 -

48(I. + bnO)m2+ ~ ~6(1 -

*C!- + ilo)m2 + +C@’

lM (1 + 5m)m2 + $ ~92(1
7

400(1 + ~o)m2 i-&~88(l

and

I

I

I

.

k)- 16@m2

J) - 56~~2

1) - 128~~2

. M) - 96@~2

-P)- 168&r12

-d- 240Jmn2
--l

.
From the first of equations (B9) the fact that a = O
by setting n = O. This fact somewhat simplifies the
determining the critical buckling stress. ,.

can be found
procedure for

The characteristicbuckling value v may be found with the aid
of equations (B9) aad equations (B3) as follows. For a given v@e
of m the value of v is assumed; the quantities & . . . ~ can

then be found for any value of n. Insertion of the values of
An“=. ~ in equations (B9) then pemits the determination of

an””” ~ in terms of f3, 7, and b (because a = O). The only

value which cannot be established is ~, but this value may be con-
sidered to be indeterminate and is carried along as an unknown with t3,
7, and 8. Substitution of the ~lUCM of %, bn$ cn, ad dn into

equations (B3) gives four equations of the form

ao+MIB+l&+P 18=0

~i3+N2i+P25=O

M3B+ N37 + P38 = O

.

.

.

.

M@3+l?47+P45=0

.

.
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Nontrivial solutions result only when the determinant

=0

13

This determhant is not generally zero for the initially assumed value
of v. Other values are therefo~ assumed until a val~ is found which
~causes the determinant to be zero; the value causing the determinant to
vanish is the characteristicbuckling value for the ratio of Lb being

considered. The variation of the buckling value v with ~ is
L/fi

shown in figure”2. The factor c is introduced (as in appendix A,
see equation (A7)) to allow for the approximate treatment of plate
columns with restrained,ends. When c = 4, which corresponds to.the
fixed-end co@ition tr-eted in this appendix, the equation for buckling
reduces simply to equation (B7). The buckling-stress coefficient for
plalx?columns with intermediate end restraints would evidently be given
by curves which fall within the narrow band indicated in the figure.
Use of the bottom curve for c = 1 for all end restraints, however,
would yield slightly conservative critical stresses for c greater
than 1, with a maximum error in any case of only”2 percent.

An indication of the suitability of the fomn of the deflection
equation (Bl) can be obtained by performing an energy solution for a
plate column with simply supported ends with the use of the following
deflection function, w~ch is sindlar in form to equation (Bl),

The circled points shown in figure 2 for
typical results from this solution. For

the curve for y = 0.30 are
practical purposes, no

essential difference is seen to exist between this solution and that
obtained in appendix A ~om the differential equation. The values
of v for the clamped plate column, therefore, are probably of
accuracy comparable to those for the simply supported plate column.

---- . . . . —.— .-. -— ----- __ ——— ____ .—. . ..—. —.—-— — .—— ----- .__ . . .
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Figure L – Coordinate system and plate dimensions used
in buckling analysis.

.
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v
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ix

Figure 2..–VaIues of v in the formula for critical stress
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v
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im
Rgure 3.– Values of v in the formula for critical stress

‘== 1.;2
+E

(L/piE)2
‘w”ti c =1 and p= 0.25, 0.30, and. 0.35.
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